Deuterium Ingress and its Impact on Material Properties

Project Objective
Establish fracture toughness and deuterium ingress rate at high [Heq] level.

Mitigating Action
Burst test at [Heq] and refine hydrogen ingress model for BOT and at RJ.

Recent Rolled Joint scrapes show continued variability of D uptake, with more results at lower levels. D3013 showed RJ D uptake lower than PIM14 RJ D uptake data. Inlet D uptake sometimes higher than outlet D uptake which is not expected. Updated analysis, with new Pickering B flux based BOT D uptake model showed that at Pickering B, TSSD is reached at 264kEPFH at BOT and at 240kEPFH at RJ.

Burst test (BT-9) showed results within the expected range. Latest test results showed that the electrolytic hydriding technique can be used to produce 100ppm [Heq] samples, with no recovery. Data needs to be verified in the next quarter.

Crack Initiation

Project Objective
To develop and validate better flaw assessment models

Project Risk
Practicality and feasibility of conducting irradiated material fatigue test in water environment is questionable, but has been requested by the CNSC.

Mitigating Action
Third party review of OPG-proposed fatigue crack initiation program

No crack initiation has been observed via inspections of flaws in any Canadian CANDU plants.

Probabilistic Core Assessments and Leak-Before-Break (LBB)

Project Objective
To develop and validate core assessment methodologies

No pressure tube leaks. No crack initiation observed via inspections in any Canadian CANDU plants.

Specification documents for core assessment tools/software approved.

Updated Pickering B LBB assessment shows improved result.

Spacer Integrity and PT/CT Contact

Project Objective
Manage the impact of spacer degradation on PT/CT contact.

Operations Risk
- PT/CT gap data collection impacts on outage duration (largest impact on Pickering B).

Mitigating Action

No new evidence of spacer degradation or wear. 2 (D07 & D12) of the 33 previously SLARed channels in P8 showed movement but was re-SLARed to meet all repowering requirements. CIGAR PT-CT gap measurement project underway with target of fall 2010 use at Darlington and spring 2011 use at Pickering B. Limited GAP measurement scope will be implemented in fall at Darlington.

Delay in project spacer work program due to supplier resource issue. Literature search on I-X750 results will be late by 2 months (New TCD: Aug 30, 2010). Recovery plans to catch up by end of 2011 are being reviewed by Work Group lead and Steering Committee members.

No new evidence of spacer degradation or wear.

Aggregate Confidence in Fuel Channel Life (project shorter life at Darlington vs. Pickering due to more severe service conditions of temperature, pressure, fluence)

Age of Units (as of end of Q2, 2010)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MED</td>
<td>MED</td>
<td>HIGH</td>
<td>MED</td>
<td>LOW</td>
</tr>
<tr>
<td>Age of Units</td>
<td>164 to 180 kEPFH</td>
<td>127 to 137 kEPFH</td>
<td>127 to 137 kEPFH</td>
<td>164 to 180 kEPFH</td>
<td>127 to 137 kEPFH</td>
<td>127 to 137 kEPFH</td>
</tr>
</tbody>
</table>

KT1.4_Word From Gord
MAJOR COMPONENT AGGREGATE RISK as of August 16, 2010 Rev 4

Pickering A Calandria Vault Inspection

Project Objective
To characterize impacts of Calandria Vault (CV) condition on unit life.

Operations Risk
Degradation of CV structural components and cooling systems may cause forced outage due to leak in CV piping which can not be repaired with online sealant capability, or permanent unit shutdown if ring thermal shield supports fail. Repeat inspections may be required if significant findings identified. No repair capability currently exists.

Mitigating Action
-Perform planned inspections of Calandria Vaults during P1011. Annual application of on-line sealant to bio shield cooling piping. Maintain dew point specification using CV driers.

Preliminary P1011 results show that there are signs of exterior corrosion of the piping and supporting components, there is no leakage or cracking observed (water trickle). Previous indication suspected to be a crack has been confirmed proven not to be a crack but rather a geometric feature. The ring thermal shield brackets thickness do not require engineering disposition, based on the P1011 ultrasonic testing results.

Results to be analysed following the inspection with assessment to be issued in November 2010. Formal Engineering Decision Meeting to be held in Fall 2010 to determine need for further inspections.

Preliminary results showed no adverse situation as long as current operating procedure is followed (maintaining proper dew point), there is no change in confidence level. Assessment will be revisited after verification of P1011 inspection results.

Pickering A Feeders – Detection and Sizing of Blunt Flaws in Weld Region of Fittings

Project Objective
Characterize condition of feeders under welds.

Operations Risk
-Require inspection at the welds to ensure adequate thickness of piping. Planned scope of 25 feeders may not be achieved due to tooling limitations.

Mitigating Action
-Use risk informed decision making approach to support operation to next planned outage as only a partial inspection is planned.

P1011 inspection campaign completed with no blunt flaws detected. Results were found to be surprising favourable

Results to be analysed following the inspection with assessment to be issued 90 days following outage completion. Statistical analysis is required to assess impact of limited inspection on the confidence level over the condition of the full reactor.

Too early to have an impact or confidence as we awaiting statistical analysis of data from the P1011 inspection.

*190k EFPF is expected Fuel Channel bearing travel life based on measured Fuel Channel elongation rates.

<table>
<thead>
<tr>
<th>Aggregate Confidence in Component Life</th>
<th>PICKERING A (Post Re-tube)</th>
<th>PICKERING B</th>
<th>DARLINGTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeders</td>
<td>HIGH</td>
<td>MED MED MED</td>
<td>MED MED MED</td>
</tr>
<tr>
<td>Steam Generators</td>
<td>HIGH HIGH HIGH</td>
<td>HIGH HIGH HIGH</td>
<td>HIGH HIGH HIGH</td>
</tr>
<tr>
<td>Reactor Components</td>
<td>MED MED MED</td>
<td>HIGH HIGH HIGH</td>
<td>HIGH HIGH HIGH</td>
</tr>
<tr>
<td>Fuel Channels</td>
<td>HIGH HIGH HIGH</td>
<td>MED MED MED</td>
<td>HIGH MED MED</td>
</tr>
</tbody>
</table>

Age of Units (as of end of Q2, 2010)
- Pickering A: 58 to 87 kEFPF
- Pickering B: 164 to 180 kEFPF
- Darlington: 127 to 137 kEFPF