PRODUCTION FORECAST AND METHODOLOGY
NUCLEAR

1.0 PURPOSE
This evidence provides the production forecast for the nuclear facilities and a description of the methodology used to derive the forecast.

2.0 OVERVIEW
OPG is seeking approval of a nuclear production forecast of 38.1 terawatt-hours ("TWh") for 2017, 38.5 TWh for 2018, 39.0 TWh for 2019, 37.4 TWh for 2020 and 35.4 TWh for 2021. This amounts to a total 188.3 TWh nuclear production forecast for the 2017-2021 test period. The nuclear production forecast for the years 2013-2021 is presented in Ex. E2-1-1 Table 1. A monthly nuclear production forecast for 2017-2021 is presented in Ex. E2-1-1 Table 2. As discussed below, this represents a challenging production forecast for OPG's nuclear facilities during a period of significant and unprecedented change in OPG's nuclear operations due to the Darlington Refurbishment Program and Pickering Extended Operations.

Nuclear production (three year rolling average) over the 2008-2021 period peaked in 2012 as shown in Chart 1. From 2012 onward, actual and planned production primarily reflects the loss of generation due to the Darlington Vacuum Building Outage ("VBO") in 2015, the first unit outage for the Darlington Refurbishment Program in 2016, the Pickering VBO in 2021 and the increase in the number of planned outage days over the test period required for Pickering Extended Operations, and to address life cycle and aging equipment issues such as replacement of Primary Heat Transport ("PHT") pump motors at Darlington. OPG continues to pursue initiatives that focus on improving planned outage execution to meet planned outage days targets, and initiatives to improve plant equipment reliability and fuel handling to meet Forced Loss Rate ("FLR") targets. These initiatives are addressed in the discussion of OPG's gap closure initiatives in the Benchmarking and Business Planning evidence (Ex. F2-1-1).
The OEB approved nuclear production for the period 2008 to 2015 was greater than actual production. As shown on Chart 2 below, the average annual production shortfall for this period was 3.2 TWh. This resulted in an average negative revenue impact of $154.0M borne each year by OPG’s shareholder. Consequently, in EB-2013-0321 OPG identified a change in OPG’s approach in developing its nuclear production forecast. This change entailed increased scrutiny to more fully and realistically recognize the scope, risks and complexity of work performed during outages and where possible, basing the forecast on actual experience with similar work performed in the past at OPG and other organizations. In EB-2013-0321 the OEB accepted OPG’s approach. The OEB noted, however, that the increased rigor had negated the need for adjustments for major unforeseen events going forward. OPG’s methodology used to develop the 2017-2021 nuclear production forecast maintains the approach set out in EB-2013-0321. OPG’s projected planned outage days, FLR, and
generation losses\(^1\) during the test period reflect challenging targets. While any production forecast is subject to unplanned outcomes, OPG continues to be subject to unanticipated production disruptions due to events such as an unbudgeted planned outage in 2015 to replace PHT pump motors at Darlington. Smaller (albeit negative) production variances were achieved in 2014 and 2015 when compared to previous years, as shown on Chart 2.

The test period production forecast takes into account the following:

- Darlington Refurbishment Program with Darlington Unit 2 being taken out of service in 2016, followed by Unit 3 in 2020, Unit 1 in 2021 (and Unit 4 in 2023). Each unit refurbishment project will take more than three years to complete. Two post-refurbishment mini-outages have been scheduled for Unit 2 to address equipment reliability issues that are expected to emerge post refurbishment. The need for these post-refurbishment outages is based on operating experience at other nuclear facilities that underwent major refurbishment. The first mini “warranty” outage of 55 days duration is scheduled for Unit 2 in 2020, within six months post refurbishment. The duration will allow sufficient time for anticipated equipment repair by the vendors. The second mini “warranty” outage of 31 days duration is scheduled for Unit 2 in 2021, within 18 months post-refurbishment. The shorter duration is due to an

\(^1\) See Attachment 1 - Glossary of Outage and Generation Performance Term for definitions.
expectation that the majority of scope required to be addressed post-refurbishment will be completed during the first post refurbishment mini-outage in 2020.

- Eight mini-outages of approximately 20 days duration at Darlington over the period 2016-2021 are required to replace the high risk PHT pump motors. There are 16 operating PHT pump motors (four per unit) at Darlington. Failure of any one of the operating motors will result in a forced outage and could result in an extended outage, depending on availability of spare motors. Recent experience at OPG and operational experience from other utilities shows the expected service life of PHT pump motors to be 25 to 30 years, i.e., the approximate current service life of the Darlington facility. Based on operating experience to-date, including an unbudgeted planned outage to replace a failed PHT pump motor in 2015, OPG has an expedited program underway to purchase new or refurbished PHT pump motors and spares (Project #73566/80144 as described in Ex. D2-1-3) and mini outages have been included in the generation plan for their installation over the next five years.

- Darlington forecast FLR of 1.0 per cent for 2016 through 2019, 4.2 per cent for 2020 and 3.0 per cent for 2021. The increase in FLR in 2020 and 2021 reflects the return to service of Darlington Unit 2 from its refurbishment outage and is consistent with industry operating experience. Based on industry operating experience, the Darlington Refurbishment Program forecasts a Unit FLR of 12 per cent in the year of return to service and the year immediately following, 6 per cent in year two post-refurbishment, 2 per cent in year three post-refurbishment, and 1 per cent in year four and beyond post-refurbishment for the refurbished unit.

- Pickering’s annual FLR stabilizing at 5.0 per cent for the period 2016 through 2021 reflecting expectations of reduced volatility in performance as a result of equipment reliability and fuel handling improvement initiatives.

- Undertaking 637 incremental planned outage days in 2016-2020 to enable the completion of various work activities required for Pickering Extended Operations as well as restoring normal planned outages and durations in 2020. These additional planned outage days reduce generation by 7.5 TWh over the period 2016-2020.
• Continuation of using mid-cycle planned outages on Pickering Units 1 and 4 each year during the 2016 to 2021 period to focus on preventive maintenance to maintain reliability and lessen the risk of forced outages.

• Maintaining a three year outage cycle for Darlington and a two year outage cycle for Pickering. Planned outage durations include production allowances, consistent with the approach described in EB-2013-0321, to reflect the risk of generation loss due to forced extensions to planned outages. These allowances more fully and realistically recognize the scope and complexity of planned outages in 2017-2021 that will be undertaken to address equipment reliability, equipment aging and parts obsolescence on OPG’s aging reactors at Darlington and Pickering.

3.0 NUCLEAR PRODUCTION PLANNING PROCESS
3.1 Methodology
Except for updates to test period information, the following evidence is substantially unchanged from that filed in EB-2013-0321.

Nuclear facilities are designed as base load generators. OPG’s annual nuclear production forecast is equal to the sum of the nuclear generating units’ capacity multiplied by the number of hours in a year, less the number of hours for planned outages, forced production losses (i.e., unplanned outages and unplanned derates, as defined in Attachment 1 to this exhibit) and corrections for sources of generation losses (i.e., lake temperature, grid losses, consumption (station service), as defined in Attachment 1).

With the exception of increased rigour in assessing work scope as discussed in section 2.0, OPG’s nuclear planning process has not changed since EB-2010-0008 and is focused on establishing annual planned outage schedules and calculating variances to planned generation due to forced production losses. Outage durations are determined based on the scope of work defined for each outage while considering recent benchmarking efforts, industry best practices and the nuclear commitment to continuous improvement. The
objective is to establish a realistic and accurate annual nuclear production forecast based on
the Nuclear Generation and Outage Plan\(^2\), with the following deliverables:

- A planned outage schedule for all stations that includes unit outage start dates, end
dates, and durations, as well as a summary of major elements comprising the scope
of work that will be executed during each outage.
- Operational reliability targets such as Unit Capability Factor ("UCF") and the level of
forced production losses aligned with the FLR.
- Generation forecasts (in TWh) for individual nuclear units and an aggregated forecast
for each station.

The Nuclear Generation and Outage Plan is approved as part of the OPG business planning
process. As discussed in Ex. F2-4-1, outage resource requirements and cost estimates for
the outage OM&A budget are also tied to the Nuclear Generation and Outage Plan.

3.1.1 Planned Outage Schedule

OPG’s planned outage schedule identifies the number of days required for inspections and
maintenance activities to ensure continued safe, reliable and long-term operation. The
planned outage schedule is prepared in accordance with OPG’s aging and life cycle
management programs and in compliance with OPG’s nuclear operating licenses issued by
the Canadian Nuclear Safety Commission ("CNSC").

Planned outages are complex, involving many OPG divisions and individuals working
together. Outages require focus, expertise, high levels of coordination and a level of detail
that exceeds that of major construction projects (due to regulatory complexity and constraints
in work execution). The planned outage schedule also incorporates “lessons learned” from
recent OPG outages and operating experience outside of OPG.

Planned outages consist of a combination of “routine” inspection and maintenance activities
and “non-routine” activities specific to a particular outage. Examples of routine activities are

\(^2\) The Nuclear Generation and Outage Plan summarizes OPG nuclear generation and outage targets and is an
input to the overall OPG Business Plan
preventive maintenance, feeder inspections and water lancing of steam generators. Non-
routine activities include corrective and deficient maintenance, and replacements or
modifications to the equipment or plant configuration that can only be done when the unit is
shut down. The majority of work in an outage typically is routine preventive maintenance and
inspection activities, while the remaining work is non-routine breakdown maintenance and
modifications.

Planned outages must be submitted to and be “time-stamped” by the IESO. In most cases,
OPG submits its nuclear outage schedule early in order to secure an early time-stamp date;
this date determines the outage advanced approval priority in the IESO’s outage queue. In
addition to an advance approval process, all outages in the queue are subject to final
approval by the IESO, which can deny this approval at any time up to the start of the outage.

For the test period, there are single unit planned outages for routine maintenance at
Darlington each year from 2016 to 2021. In addition, the first outage for the Darlington
Refurbishment Program will commence in October 2016 with Unit 2 being taken out of
service. Unit 2 is scheduled to return to service in 2020. Unit 3 refurbishment is scheduled to
begin in 2020 and Unit 1 refurbishment is scheduled to begin in 2021. There are two short
post-refurbishment mini “warranty” outages scheduled for Unit 2 in 2020 and 2021 as
described in section 2.0 above.

The six Pickering units are on a two year planned outage cycle for routine maintenance,
meaning that three units are subject to planned outages each year. Therefore Pickering will
be subject to three planned outages per year in the 2016 to 2020 period. In addition there is
one mid-cycle planned outage (“mid cycle” meaning mid-way through the two year planned
outage cycle for Pickering as discussed above) for Pickering Unit 1, or Unit 4 every year in
the test period, to allow for additional preventive maintenance which will lessen the risk of
forced outages on those units.
There is no VBO or Station Containment Outage (“SCO”) scheduled for Darlington during the test period. OPG conducted a combined VBO SCO outage in 2015. Although Darlington’s next VBO was not required until 2021, OPG moved this outage forward to align with the SCO outage that was required to be done in 2015, eliminating the need for an additional outage in 2021 to perform a VBO. A six unit Pickering VBO is scheduled for 2021.

The planned outage durations include a station level allowance for uncertainty related to potential discovery work. They also include a nuclear fleet level allowance to address risks to the completion of the outage on schedule, risks that could emerge from fleet aging issues, or from complexity in fleet level activities (e.g., availability of Inspection Maintenance Service resources to service multiple outages).

3.1.2 Forced Loss Rate

Variances to planned generation result from forced production losses (i.e., unplanned outages and derates). OPG forecasts FLR targets that reflect the risk of forced production losses at Darlington and Pickering. The FLR targets are based on the plants’ historical performance, any known improvements or plant material condition issues, and initiatives to improve equipment reliability.

Darlington’s forced outage performance has shown significant volatility as set out in Chart 3 below:

<table>
<thead>
<tr>
<th>Year</th>
<th>FLR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.2</td>
</tr>
<tr>
<td>2011</td>
<td>0.6</td>
</tr>
<tr>
<td>2012</td>
<td>2.3</td>
</tr>
<tr>
<td>2013</td>
<td>4.8</td>
</tr>
<tr>
<td>2014</td>
<td>1.5</td>
</tr>
<tr>
<td>2015</td>
<td>4.9</td>
</tr>
<tr>
<td>Avg</td>
<td>2.9</td>
</tr>
</tbody>
</table>

The higher than planned FLR in 2015 is primarily attributable to PHT pump motor failures (PHT electrical protection trip; pressurized heater leak). Darlington’s forecast FLR is 1.0 per cent for 2016 through 2019 and 4.2 per cent for 2020, then decreasing to 3.0 in 2021 (see Ex. E2-1-2 Table 1). While the forecast of 1.0 per cent for 2016 through 2019 is aggressive relative to the historical trend, it is achievable based on expectations that OPG executes
ongoing initiatives to improve equipment reliability that will stabilize Darlington’s FLR. It is also based on a reasonable assumption that OPG will be able to install new PHT pump motors during the mini planned outages. Increased FLR in 2020 and 2021 is due to the refurbished Darlington Unit 2 returning to service.

Pickering’s forced outage performance has also shown volatility as set out in Chart 4 below:

Chart 4

<table>
<thead>
<tr>
<th>Pickering Forced Loss Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLR (%) 2010 2011 2012 2013 2014 2015 Avg</td>
</tr>
<tr>
<td>9.3</td>
</tr>
</tbody>
</table>

Pickering’s forecast FLR is 5.0 per cent for each year from 2016 to 2021 (see Ex. E2-1-2 Table 1) reflecting an expectation that the FLR will stabilize as a result of ongoing equipment reliability improvement initiatives. Also, mid-cycle planned outages were introduced at Pickering Units 1 and 4 starting in 2012 to allow for additional preventive maintenance which will lessen the risk of forced outages. These mid-cycle outages are planned for each of 2016 through 2020.

Chart 5 presents historical and forecast FLR for the nuclear facilities for the period 2013-2021. The black line represents the three-year rolling average FLR.
Chart 5
OPG Nuclear FLR (2013-2021)
<table>
<thead>
<tr>
<th></th>
<th>ATTACHMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Attachment 1 Glossary of Outage and Generation Performance Terms</td>
</tr>
</tbody>
</table>
GLOSSARY OF
OUTAGE AND GENERATION PERFORMANCE TERMS

The following evidence is substantially unchanged from that filed in EB-2013-0321.

Consumption Losses: The electrical service energy consumed by a station and used to supply the electrical load for ancillary equipment and related on-site processes.

Derate: A derate is where a unit is delivering a portion but not all of its full electrical power. Derates include:

- Planned Derate: A planned reduction in available power generation, scheduled with the IESO at least 28 days in advance.
- Forced Derate: An unplanned reduction in available power generation, which can include deratings due to equipment, safety, or environmental reasons.

Forced Extensions to Planned Outages ("FEPO"): An extension to a planned outage which is not scheduled with the IESO at least 28 days in advance, and is unavoidable because the unit is not capable of safe operation at the scheduled outage completion time (e.g., an unexpected condition discovered during the scheduled outage which drives critical path).

Forced Loss Rate ("FLR"): Forced Loss Rate is a World Association of Nuclear Operators ("WANO") indicator of performance reliability. Forced Loss Rate is a measure of the percentage of energy generation that a plant is not supplying to the electrical grid during non-planned outage periods, because of forced production losses, i.e., forced outages or unplanned derates. This indicator excludes forced production losses due to high lake water temperatures, and forced extensions to planned outages.

Forced Outage: An unplanned electricity system component failure (e.g., immediate, delayed, postponed, startup failure) or other condition that requires the unit be removed
completely from service immediately and, per WANO industry performance reporting
guidelines, for which OPG did not provide at least 28 days advance notice to the IESO for
the start of the outage.

Forced Production Losses: Lost production due to forced outages and forced derates.

Generation Losses: The total generation losses that are outside the control of plant
management, equal to the sum of “Consumption Losses” + “Grid Losses” + “Lake
Temperature Losses”.

Grid Losses: Generation losses due to a reduction in electrical power generation because
the grid is unable to accept the available power (due to a problem outside of the station
boundary) or because of demand limitations.

Lake Temperature Losses: High lake water temperature losses result when reduced
condenser efficiency results in lower generation output.

Life Cycle Management: Life cycle management is the integration of safety management,
ageing management and business management decisions, together with economic
considerations over the life of a nuclear power plant in order to:

- Maintain an acceptable level of performance including safety.
- Optimize the operation, maintenance and service life of structures, systems, and
 components.
- Maximize returns on investment over the operational life of the nuclear power plant.
- Take account of strategies for life cycle funding (including decommissioning), fuel
 management, and waste management.

Maximum Continuous Rating: The design, or demonstrated higher, maximum power of a
unit operating continuously (in MWs).
Planned Outage: An outage which has been scheduled with the IESO at least 28 days in advance of the start date. It is subject to final approval by the IESO, the starting time of which could be postponed up to the scheduled hour of shutdown. The schedule must include the planned completion date. The planned outage duration cannot be revised (increased or decreased) after the planned outage has commenced.

Unbudgeted Planned Outage: An emergent outage that was not included in the approved integrated nuclear outage and generation plan that underpins the business plan, but for which OPG had sufficient time to notify the IESO at least 28 days prior to the start date. Although unbudgeted, this allows the outage to be categorized as “planned” for performance reporting purposes as per WANO industry guidelines.

Unit Capability Factor (“UCF”): A standard WANO indicator of performance reliability. Unit capability factor is the percentage of maximum energy generation that a unit is capable of supplying to the electrical grid, limited only by factors within the control of plant management. Unit capability factor is derived as the ratio of generation available from a unit over a specified time period divided by the maximum generation that the unit is able to produce under ambient conditions and at maximum reactor power during the same period. The available generation is reduced by planned and unplanned production losses deemed under station management’s control. However, the derivation of available generation is not affected by losses due to events not under station management’s control including environmental conditions (e.g., loss of transmission, lake water temperature derates, labour disputes, and potential low demand periods). While these events do impact production, they do not penalize unit capability factor as the units are considered available to produce at these times.
<table>
<thead>
<tr>
<th>Line No.</th>
<th>Prescribed Facility</th>
<th>2013 Actual (a)</th>
<th>2014 Actual (b)</th>
<th>2015 Actual (c)</th>
<th>2016 Budget (d)</th>
<th>2017 Plan (e)</th>
<th>2018 Plan (f)</th>
<th>2019 Plan (g)</th>
<th>2020 Plan (h)</th>
<th>2021 Plan (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Darlington NGS</td>
<td>25.1</td>
<td>28.0</td>
<td>23.3</td>
<td>26.0</td>
<td>19.0</td>
<td>19.3</td>
<td>19.7</td>
<td>17.7</td>
<td>16.6</td>
</tr>
<tr>
<td>2</td>
<td>Pickering NGS</td>
<td>19.6</td>
<td>20.1</td>
<td>21.2</td>
<td>20.8</td>
<td>19.1</td>
<td>19.2</td>
<td>19.4</td>
<td>19.6</td>
<td>18.8</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>44.7</td>
<td>48.1</td>
<td>44.5</td>
<td>46.8</td>
<td>38.1</td>
<td>38.5</td>
<td>39.0</td>
<td>37.4</td>
<td>35.4</td>
</tr>
</tbody>
</table>

Table 1
Production Forecast Trend - Nuclear (TWh)

Numbers may not add due to rounding.
<table>
<thead>
<tr>
<th>Line No.</th>
<th>Prescribed Facility</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>2017 Plan:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Darlington NGS</td>
<td>1.9</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.5</td>
<td>1.4</td>
<td>1.9</td>
<td></td>
<td>19.0</td>
</tr>
<tr>
<td>2</td>
<td>Pickering NGS</td>
<td>1.7</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td></td>
<td>19.1</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>3.6</td>
<td>2.5</td>
<td>2.6</td>
<td>2.6</td>
<td>2.8</td>
<td>3.3</td>
<td>3.6</td>
<td>3.7</td>
<td>3.5</td>
<td>2.9</td>
<td>3.0</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>2018 Plan:</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Darlington NGS</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.5</td>
<td>1.4</td>
<td>1.9</td>
<td>19.3</td>
</tr>
<tr>
<td>5</td>
<td>Pickering NGS</td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
<td>1.4</td>
<td>1.4</td>
<td>1.7</td>
<td>1.4</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td>6</td>
<td>Total</td>
<td>3.8</td>
<td>3.4</td>
<td>3.4</td>
<td>2.6</td>
<td>2.7</td>
<td>2.6</td>
<td>3.2</td>
<td>3.5</td>
<td>3.5</td>
<td>2.9</td>
<td>3.0</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>2019 Plan:</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Darlington NGS</td>
<td>1.9</td>
<td>1.7</td>
<td>1.5</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.4</td>
<td>1.9</td>
<td>1.9</td>
<td>19.7</td>
</tr>
<tr>
<td>8</td>
<td>Pickering NGS</td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.8</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td></td>
<td>19.4</td>
</tr>
<tr>
<td>9</td>
<td>Total</td>
<td>3.8</td>
<td>3.4</td>
<td>3.2</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>3.3</td>
<td>3.6</td>
<td>3.5</td>
<td>2.8</td>
<td>3.4</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>2020 Plan:</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Darlington NGS</td>
<td>1.9</td>
<td>1.7</td>
<td>1.0</td>
<td>0.6</td>
<td>0.8</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.4</td>
<td>1.8</td>
<td></td>
<td>17.7</td>
</tr>
<tr>
<td>11</td>
<td>Pickering NGS</td>
<td>1.7</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.9</td>
<td>2.1</td>
<td>1.8</td>
<td>1.4</td>
<td>1.6</td>
<td>2.0</td>
<td></td>
<td>19.6</td>
</tr>
<tr>
<td>12</td>
<td>Total</td>
<td>3.6</td>
<td>3.1</td>
<td>2.4</td>
<td>2.0</td>
<td>2.2</td>
<td>2.9</td>
<td>3.6</td>
<td>3.9</td>
<td>3.5</td>
<td>2.9</td>
<td>3.4</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>2021 Plan:</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Darlington NGS</td>
<td>1.9</td>
<td>1.7</td>
<td>1.8</td>
<td>1.3</td>
<td>1.9</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>0.8</td>
<td>1.1</td>
<td>1.2</td>
<td>16.6</td>
</tr>
<tr>
<td>14</td>
<td>Pickering NGS</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
<td>1.4</td>
<td>0.0</td>
<td>1.4</td>
<td>1.7</td>
<td>2.0</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
<td>18.8</td>
</tr>
<tr>
<td>15</td>
<td>Total</td>
<td>3.8</td>
<td>3.3</td>
<td>3.4</td>
<td>2.7</td>
<td>1.9</td>
<td>2.8</td>
<td>2.9</td>
<td>3.2</td>
<td>2.9</td>
<td>2.6</td>
<td>2.8</td>
<td>3.1</td>
<td>35.4</td>
</tr>
</tbody>
</table>